Collapsin response mediator protein 4a (CRMP4a) is upregulated in motoneurons of mutant SOD1 mice and can trigger motoneuron axonal degeneration and cell death.
نویسندگان
چکیده
Embryonic motoneurons from mutant SOD1 (mSOD1) mouse models of amyotrophic lateral sclerosis (ALS), but not wild-type motoneurons, can be triggered to die by exposure to nitric oxide (NO), leading to activation of a motoneuron-specific signaling pathway downstream of the death receptor Fas/CD95. To identify effectors of mSOD1-dependent cell death, we performed a proteomic analysis. Treatment of cultured mSOD1 motoneurons with NO led to a 2.5-fold increase in levels of collapsin response mediator protein 4a (CRMP4a). In vivo, the percentage of mSOD1 lumbar motoneurons expressing CRMP4 in mSOD1 mice increased progressively from presymptomatic to early-onset stages, reaching a maximum of 25%. Forced adeno-associated virus (AAV)-mediated expression of CRMP4a in wild-type motoneurons in vitro triggered a process of axonal degeneration and cell death affecting 60% of motoneurons, whereas silencing of CRMP4a in mSOD1 motoneurons protected them from NO-induced death. In vivo, AAV-mediated overexpression of CRMP4a but not CRMP2 led to the death of 30% of the lumbar motoneurons and an 18% increase in denervation of neuromuscular junctions in the gastrocnemius muscle. Our data identify CRMP4a as a potential early effector in the neurodegenerative process in ALS.
منابع مشابه
A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterized by motoneuron degeneration and muscle paralysis. Although the precise pathogenesis of ALS remains unclear, mutations in Cu/Zn superoxide dismutase (SOD1) account for approximately 20-25% of familial ALS cases, and transgenic mice overexpressing human mutant SOD1 develop an ALS-like phenotype. Evidence sugge...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملThe BCL-2 family protein Bid is critical for pro-inflammatory signaling in astrocytes.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons in the spinal cord, brainstem and motor cortex. Mutations in the superoxide dismutase 1 (SOD1) gene represent a frequent genetic determinant and recapitulate a disease phenotype similar to ALS when expressed in mice. Previous studies using SOD1(G93A) transgenic mice have suggested a...
متن کاملAstrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress
Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder caused by dysfunction and degeneration of motor neurons. Multiple disease-causing mutations, including in the genes for SOD1 and TDP-43, have been identified in ALS. Astrocytes expressing mutant SOD1 are strongly implicated in the pathogenesis of ALS: we have shown that media conditioned by astrocytes carrying mutant SOD1(G93A) c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2010